ENGR 4350:Applied Deep Learning

Logistic Regression: Part 1

Outline

- An example of neural network
- Logistic Regression
 - Forward Pass
 - Loss Function
 - Gradient Descent

A Neural Network Example

A Neural Network Example

Make	Model	Year	Mileage	MPG	Buying Price	Selling Price
Ford	Edge	2018	50,000	23	\$19,000	\$10,000
Toyota	Land Cruiser	2020	10,000	15	\$80,000	\$50,000
vw	Golf	2010	150,000	36	\$7,000	\$2,000

Make
Model Selling
Price
$$\vec{y} = \sigma($$

 $ec{y}=\sigma(ec{ heta}ec{x}+ec{b})$

A Neural Network Example

Binary Classification

- Complex decision makings can be simplified to classification problems.
 - Vehicle control
 - Robotic arm control
 - Gaming
 - 0
- Binary classification works most of the time.
 - Visitor identification
 - Animal protection
 - Farming
 -)

Logistic Regression

Logistic regression estimates the probability of an event occurring, P(y = 1|x) such as voted or didn't vote, based on a given dataset of independent variables. Since the outcome is a probability, the dependent variable is bounded between 0 and 1.

- Classification
- Prediction
- Rating

....

E.g. Given the "make, model, year, mileage, MPG" of vehicles, estimate probabilities of prices of these vehicles under \$20,000.

Problem Settings

$$\text{Dataset:} \left\{ \left(\mathbf{x}^{(1)}, y^{(1)} \right), \left(\mathbf{x}^{(2)}, y^{(2)} \right), \dots, \left(\mathbf{x}^{(M)}, y^{(M)} \right) \right\}$$

M examples, N independent variables/features

Forward Pass / Prediction

ld (Model)	Year	Mileage	MPG	Buying Price
5 (Ford Edge)	2018	50,000	23	1 (\$19,000)
105 (Toyota Landcruise r)	2020	10,000	15	0 (\$80,000)
233 (vw Golf)	2010	150,000	36	1 (\$7,000)

Forward Pass / Prediction

Input: \mathbf{X}

Sigmoid function:
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Loss Function

$$\text{Dataset:} \left\{ \left(\mathbf{x}^{(1)}, y^{(1)} \right), \left(\mathbf{x}^{(2)}, y^{(2)} \right), \dots, \left(\mathbf{x}^{(M)}, y^{(M)} \right) \right\}$$

 $\begin{array}{l} \text{Cross entropy loss function: } \mathcal{L}(\mathbf{\hat{y}},\mathbf{y}) = -(\mathbf{y} \text{log } \mathbf{\hat{y}} + (1-\mathbf{y}) \text{log } (1-\mathbf{\hat{y}})) \\ \text{Mean squared error (MSE) loss function: } \mathcal{L}(\mathbf{\hat{y}},\mathbf{y}) = \frac{1}{2}(\mathbf{\hat{y}} - \mathbf{y})^2 \end{array}$

$$ext{Cost function: } J(\mathbf{w},b) = rac{1}{M} \sum \mathcal{L}(\mathbf{\hat{y}},\mathbf{y})$$

Gradient Descent

Find \mathbf{w} and b that minimize $J(\mathbf{w}, b)$

Gradient Descent

repeat until converge { $\mathbf{w} := \mathbf{w} - \alpha \frac{\partial J}{\partial \mathbf{w}}$ $b := b - \alpha \frac{\partial J}{\partial b}$ }

 α is the learning rate

