ENGR 4350:Applied Deep Learning

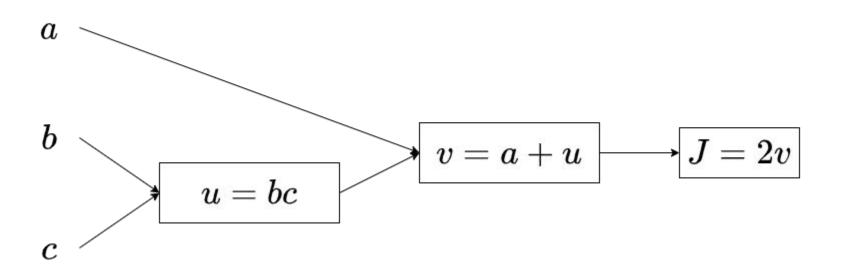
Logistic Regression: Part 2

Outline

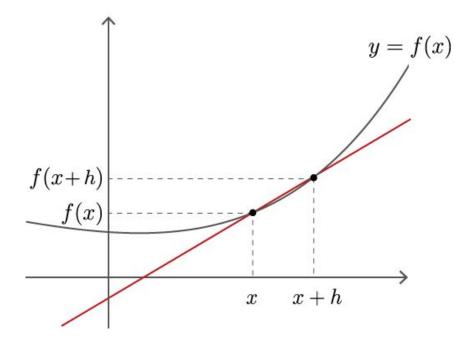
- Computation Graph
- Single Example Back Propagation
- Vectorization

Computation Graph: Forward Pass

$$J=2(a+bc)$$



Derivatives



Analytic derivative: $f'(x) = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$

- Fast
- Accurate
- Error-Prone

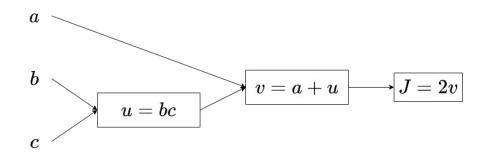
Numerical derivative:

- Slow
- Approximate
- Easy to code

$$f'(x)pprox rac{f(x+h)-f(x)}{h} \ f'(x)pprox rac{f(x+h)-f(x-h)}{2h}$$

Computation Graph: Backward Pass

J = 2(a + bc)

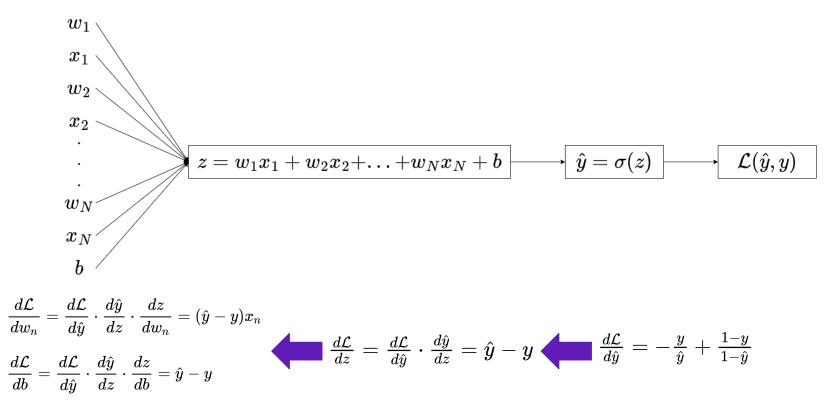


$$\frac{dJ}{dv} = 2$$
$$\frac{dJ}{da} = \frac{dJ}{dv} \cdot \frac{dv}{da} = 2$$
$$\frac{dJ}{du} = \frac{dJ}{dv} \cdot \frac{dv}{du} = 2$$
$$\frac{dJ}{db} = \frac{dJ}{dv} \cdot \frac{dv}{du} \cdot \frac{du}{db} = 2c$$
$$\frac{dJ}{dc} = \frac{dJ}{du} \cdot \frac{du}{dc} = 2b$$

Computation Graph of Logistic Regression

 $z = w_1 x_1 + w_2 x_2 + \ldots + w_N x_N + b$ $\hat{y}=\sigma(z)=rac{1}{1+e^{-z}}$ $\mathcal{L}(\hat{y},y) = -(y \mathrm{log} \ \hat{y} + (1-y) \mathrm{log} \ (1-\hat{y}))$ w_1 x_1 w_2 x_2 $\hat{y} = w_1 x_1 + w_2 x_2 + \ldots + w_N x_N + b \longmapsto \hat{y} = \sigma(z)$ $\mathcal{L}(\hat{y}, y)$ w_N x_N b

Back Propagation of Logistic Regression



Back Propagation Loop

Initialize: $\frac{\partial J}{\partial w_1} = 0, \ \frac{\partial J}{\partial w_2} = 0, \ \dots, \ \frac{\partial J}{\partial w_N} = 0, \ \frac{\partial J}{\partial b} = 0$ For m = 1 to M For n = 1 to N $rac{\partial J}{\partial w_n} = rac{\partial J}{\partial w_n} + ig(\hat{y}^{(m)} - y^{(m)} ig) x_n^{(m)}$ $rac{\partial J}{\partial b} = rac{\partial J}{\partial b} + \left(\hat{y}^{(m)} - y^{(m)}
ight)$ For n = 1 to N $rac{\partial J}{\partial w_n} = rac{1}{M} rac{\partial J}{\partial w_n}$

$$n=w_n-lpha rac{\partial J}{\partial w_n}$$

 $rac{\partial J}{\partial b} = rac{1}{M} rac{\partial J}{\partial b}$ $b = b - lpha rac{\partial J}{\partial b}$

Vectorization

Initialize:
$$\frac{\partial J}{\partial w_1} = 0, \ \frac{\partial J}{\partial w_2} = 0, \ \dots, \ \frac{\partial J}{\partial w_N} = 0, \ \frac{\partial J}{\partial b} = 0$$

 $rac{\partial J}{\partial \mathbf{w}} = rac{1}{M} (\mathbf{\hat{y}} - \mathbf{y})^T \cdot \mathbf{X}$ np.matmul() or np.dot()

 $rac{\partial J}{\partial b} = rac{1}{M}\sum (\mathbf{\hat{y}} - \mathbf{y})$ np.sum()

$$\mathbf{w} = \mathbf{w} - lpha rac{\partial J}{\partial \mathbf{w}}$$
 $b = b - lpha rac{\partial J}{\partial \mathbf{w}}$

$$b - lpha \frac{\partial b}{\partial b}$$

Vectorized Gradient Descent

While $J > \varepsilon$

$$\begin{split} \hat{\mathbf{y}} &= \sigma \left(\mathbf{X} \mathbf{w}^{\mathrm{T}} + b \right) \\ \mathcal{L}(\hat{\mathbf{y}}, \mathbf{y}) &= -(\mathbf{y} \log \, \hat{\mathbf{y}} + (1 - \mathbf{y}) \log \, (1 - \hat{\mathbf{y}})) \\ J(\mathbf{w}, b) &= \frac{1}{M} \sum \mathcal{L}(\hat{\mathbf{y}}, \mathbf{y}) \\ \frac{\partial J}{\partial \mathbf{w}} &= \frac{1}{M} (\hat{\mathbf{y}} - \mathbf{y})^T \cdot \mathbf{X} \\ \frac{\partial J}{\partial b} &= \frac{1}{M} \sum (\hat{\mathbf{y}} - \mathbf{y}) \\ \mathbf{w} &= \mathbf{w} - \alpha \frac{\partial J}{\partial \mathbf{w}} \\ b &= b - \alpha \frac{\partial J}{\partial b} \end{split}$$