ENGR 3321: Introduction to Deep Learning for Robotics

Neural Network NN1:

Multi-Input, Multi-Hidden Layer, One-Output Model

Outline

- Multi input, multi hidden layer, single output Model
- Image Processing

Graphical Representation

Review: Model Training

- 1. Prepare datasets: train, validation
- 2. (Randomly) Initialize model parameters: w, b.
- 3. Evaluate the model with a metric (e.g. BCE, MSE).
- 4. Calculate gradients of loss.
- 5. Update parameters a small step on the directions descending the gradient of loss.
- 6. Repeat 3 to 5 until converge.

Prepare Datasets: Training

A dataset with M_{tr} samples:

- Each sample has N features: x_1, x_2, \ldots, x_N
- Each sample is labeled: y ($y \in \{0, 1\}$ for binary classification)

$$\mathcal{D} = \{ (^{(1)}x_1^{[0]}, ^{(1)}x_2^{[0]}, \dots, ^{(1)}x_N^{[0]}, ^{(1)}y), (^{(2)}x_1^{[0]}, ^{(2)}x_2^{[0]}, \dots, ^{(2)}x_N^{[0]}, ^{(2)}y), \dots, (^{(M_{tr})}x_1^{[0]}, ^{(M_{tr})}x_2^{[0]}, \dots, ^{(M_{tr})}x_N^{[0]}, ^{(M_{tr})}y) \}$$

$$= \{ (^{(1)}\mathbf{x}^{[0]}, ^{(1)}y), (^{(2)}\mathbf{x}^{[0]}, ^{(2)}y), \dots, (^{(M_{tr})}\mathbf{x}^{[0]}, ^{(M_{tr})}y) \}$$

Prepare Datasets: Validation

A dataset with M_v ($M_v < M_{tr}$) samples:

- Each sample has N features: $\tilde{x}_1, \tilde{x}_2, \dots, \tilde{x}_N$
- Each sample is labeled: *y*
- Validation dataset can be used to evaluate model.
- Validation dataset does not participate into model updating

$$\mathcal{D} = \{ (^{(1)}\tilde{x}_1, ^{(1)}\tilde{x}_2, \dots, ^{(1)}\tilde{x}_N, ^{(1)}y), (^{(2)}\tilde{x}_1, ^{(2)}\tilde{x}_2, \dots, ^{(2)}\tilde{x}_N, ^{(2)}y), \dots, (^{(M_v)}\tilde{x}_1, ^{(M_v)}\tilde{x}_2, \dots, ^{(M_v)}\tilde{x}_N, ^{(M_v)}y) \}$$

$$= \{ (^{(1)}\tilde{\mathbf{x}}, ^{(1)}y), (^{(2)}\tilde{\mathbf{x}}, ^{(2)}y), \dots, (^{(M_v)}\tilde{\mathbf{x}}, ^{(M_v)}y) \}$$

NN1 Model (Matrix Representation)

$$\hat{\mathbf{y}} = \sigma(\mathbf{X}^{[L-1]} \cdot \mathbf{W}^{[L]T} + \mathbf{b}^{[L]})$$
(M, 1) (M, N_{L-1}) (N_{L-1}, 1) (1, 1)

$$X^{[l]} = \sigma(X^{[l-1]} \cdot W^{[l]T} + b^{[l]}), l = 1, 2, ..., L-1$$

 (M, N_l) (M, N_{l-1}) (N_{l-1}, N_l) $(1, N_l)$

Model Evaluation Metrics

Binary Cross Entropy (BCE)

$$\mathcal{L}(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} -^{(i)} y \ln^{(i)} \hat{y} - (1 - ^{(i)} y) \ln(1 - ^{(i)} \hat{y}) = \overline{-\mathbf{y} \ln \hat{\mathbf{y}} - (1 - \mathbf{y}) \ln(1 - \hat{\mathbf{y}})}$$

Mean Squared Error (MSE)

$$\mathcal{L}(\hat{\mathbf{y}}, \mathbf{y}) = \frac{1}{M} \sum_{i=1}^{M} (^{(i)}\hat{y} - ^{(i)}y)^2 = \overline{(\hat{\mathbf{y}} - \mathbf{y})^2}$$

Gradients of Loss

$$\nabla \mathcal{L} = \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[1]}} \frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[1]}} \dots \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}} \frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}} \dots \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[L]}} \frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[L]}} \right]$$

Back-Propagation (Last Layer)

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{y}}} \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{Z}^{[L]}} \frac{\partial \mathbf{Z}^{[L]}}{\partial \mathbf{W}^{[L]}} = \frac{1}{M} (\hat{\mathbf{y}} - \mathbf{y})^T \cdot \mathbf{X}^{[L-1]}$$

$$rac{\partial \mathcal{L}}{\partial b^{[L]}} = rac{\partial \mathcal{L}}{\partial \hat{\mathbf{v}}} rac{\partial \hat{\mathbf{y}}}{\partial \mathbf{Z}^{[L]}} rac{\partial \mathbf{Z}^{[L]}}{\partial b^{[L]}} = \overline{\hat{\mathbf{y}} - \mathbf{y}}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{X}^{[L-1]}} = \frac{\partial \mathcal{L}}{\partial \hat{\mathbf{y}}} \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{Z}^{[L]}} \frac{\partial \mathbf{Z}^{[L]}}{\partial \mathbf{X}^{[L-1]}} = (\hat{\mathbf{y}} - \mathbf{y}) \cdot \mathbf{W}^{[L]}$$

Back-Propagation (Hidden Layers)

$$l = 1, \dots, L - 1$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{X}^{[l]}} \frac{\partial \mathbf{X}^{[l]}}{\partial \mathbf{Z}^{[l]}} \frac{\partial \mathbf{Z}^{[l]}}{\partial \mathbf{W}^{[l]}} = \frac{1}{M} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{X}^{[l]}} * \mathbf{X}^{[l]} * (1 - \mathbf{X}^{[l]}) \right]^{T} \cdot \mathbf{X}^{[l-1]}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{X}^{[l]}} \frac{\partial \mathbf{X}^{[l]}}{\partial \mathbf{Z}^{[l]}} \frac{\partial \mathbf{Z}^{[l]}}{\partial \mathbf{b}^{[l]}} = \overline{\frac{\partial \mathcal{L}}{\partial \mathbf{X}^{[l]}} * \mathbf{X}^{[l]} * (1 - \mathbf{X}^{[l]})}, \text{ axis} = 0, \text{ keepdim}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{X}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{X}^{[l]}} \frac{\partial \mathbf{X}^{[l]}}{\partial \mathbf{Z}^{[l]}} \frac{\partial \mathbf{Z}^{[l]}}{\partial \mathbf{X}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{X}^{[l]}} * \mathbf{X}^{[l]} * (1 - \mathbf{X}^{[l]}) \cdot \mathbf{W}^{[l]}$$

igwedge BP stops when $\it l=1$

Gradient Descent Optimization

```
Given dataset: \left\{ \left( {^{(1)}}\mathbf{x}, {^{(1)}}\mathbf{y} \right), \left( {^{(2)}}\mathbf{x}, {^{(2)}}\mathbf{y} \right), \dots, \left( {^{(M)}}\mathbf{x}, {^{(M)}}\mathbf{y} \right) \right\}
Initialize \mathbf{W}^{[l]}, \mathbf{b}^{[l]}
Repeat until converge {
         compute \mathcal{L}ig(\mathbf{\hat{Y}},\mathbf{Y}ig)
         compute \nabla \mathcal{L}
         \mathbf{W}^{[l]} := \mathbf{W}^{[l]} - \alpha \cdot d\mathbf{W}^{[l]}
         \mathbf{b}^{[l]} := \mathbf{b}^{[l]} - lpha \cdot d\mathbf{b}^{[l]}
where \alpha is learning rate
```

Color Image

Image Representation

Chapter 23, The scientist and engineer's guide to digital signal processing

Image Resolution

Pixel Intensity

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	81	47	۰	- 6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

157	153	174	168	150	152	129	151	172	161	155	156
156	182	163	74	76	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	76	20	169
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	256	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

Pixel values

0	50	100	150	200	255
		1			

Pixel Localization

Image File Formats

		web, screen 🔓 prin					
image format	colour model	transparency	destination	remarks			
JPG	RGB			generational degradation			
TIFF	RGB / CMYK	1		layered images, image stacks			
GIF	RGB	1		limited colour, animated images			
PNG	RGB	1		lossless compression			
				@ IlluScienti			
file format	colour model	transparency	destination	remarks			
svg	RGB	1		interactive, scriptable			
EPS	RGB / CMYK	1		PostScript document			
PDF	RGB / CMYK	1		includes PostScript, platform independent			

Low-Level Image Processing

High-Level Image Processing

- Image restoration
- Object detection and recognition
- Image enhancement
- Image segmentation
- Feature extraction
- Morphological processing
- Analogue image processing
- Image compression
- Pattern recognition

. . .

Image Feature Extraction

Edge Detection

Corner Detection

"flat" region: no change in all directions "edge": no change along the edge direction

"corner": significant change in all directions with small shift

Feature Transform

Color Histogram

Image Processing w/ Deep Learning

Deep Learning Advantages

- Automatic Feature Learning
 - Traditional Techniques: Require handcrafted features that are manually designed by experts.
 - **Deep Learning**: Automatically learns the optimal features directly from raw data (e.g., pixel values).
- Better Performance on Complex Tasks
 - o Traditional Techniques: Work well on relatively simple, controlled datasets.
 - **Deep Learning**: Excels on complex datasets with many variations (e.g., those with high variability in lighting, object orientation, or backgrounds).
- End-to-End Learning
 - Traditional Techniques: Involve separate stages first, feature extraction, and then classification.
 - **Deep Learning**: Provides an end-to-end learning process, meaning that the entire model (from raw input to output) is optimized in one step.
- Scalability and Adaptability
 - Traditional Techniques: Often need significant adjustments when applied to different tasks.
 - Deep Learning: Deep learning models are highly scalable and adaptable across different image types and tasks.