ENGR 3421:Robotics I

Raspberry Pi

Outline

- Raspberry Pi Get Started
- GPIO Pins
- gpiozero

Raspberry Pi Overview

Raspberry Pi is a low cost, credit-card sized computer (single-board computer). It's capable of doing everything you'd expect a desktop computer to do.

Raspberry Pi Projects

- NAS Server
- <u>Retro Gaming</u>
- Plant Watering
- Magic Mirror
- <u>Smart Home</u>
- <u>Router</u>
- <u>3D Printer</u>
- <u>Robot</u>
- Home Security

Raspberry Pi vs Arduino

Features

Raspberry Pi

Raspberry Pi is a Microcomputer
Operating System on MicroSD Card
USB, Video, Camera, Display & Audio
I2C & SPI Buses
Digital I/O
5v USB power
Commercial patented product

Arduino is a Microcontroller
Bootloader on chip
USB
I2C & SPI Buses
Digital I/O and Analog Inputs
5v USB & 8-20v DC power
Open source design

Arduino

DroneBotWorkshop.com

Raspberry Pi vs Arduino

•Up to 1.5 GHz 64-bit quad-core CPU
•512 Mb - 4 Gb RAM
•26 Digital I/O pins
•No Analog inputs
•Bluetooth & WiFi (some models)
•Ethernet (some models)
•Expand with HATs

•16 MHz 8-bit single-core MCU
•2 Kb - 8 Kb SRAM
•14 - 54 Digital I/O pins
•6 - 16 Analog inputs
•No Bluetooth or Wifi
•No Ethernet
•Expand with Shields

DroneBotWorkshop.com

Raspberry Pi vs Arduino

•USB (or USB-C) power supply •Keyboard •Mouse •HDMI Monitor •Adapter cables as required

DroneBotWorkshop.com

Raspberry Pi Setup

- Download <u>Raspberry Pi Imager</u>.
- Flash Raspberry Pi OS to micro SD card.
- Insert micro SD card.
- Connect Monitor.
- Connect keyboard and mouse.
- (Optional) Connect ethernet cable.
- Plug in power.

Pinout

3V3 power o-	0.0	0	5V power
GPIO 2 (SDA) o	00	0	5V power
GPIO 3 (SCL) -	00	-0	Ground
GPIO 4 (GPCLK0)	00	0	GPIO 14 (TXD)
Ground o-	00	0	GPIO 15 (RXD)
GPI0 17	00	0	GPIO 18 (PCM_CLK)
GPI0 27	00	0	Ground
GPI0 22	00	-0	GPIO 23
3V3 power o-	O O	-0	GPIO 24
GPIO 10 (MOSI)	00	-0	Ground
GPI0 9 (MISO)		-0	GPIO 25
GPIO 11 (SCLK) -	00	0	GPIO 8 (CE0)
Ground o-	00	-0	GPIO 7 (CE1)
GPIO 0 (ID_SD)		0	GPIO 1 (ID_SC)
GPIO 5 o-	00	-0	Ground
GPIO 6 -	00	-0	GPIO 12 (PWM0)
GPIO 13 (PWM1)	00		Ground
GPIO 19 (PCM_FS) -	00	-0	GPIO 16
GPI0 26	00	0	GPIO 20 (PCM_DIN)
Ground o	00	-0	GPIO 21 (PCM_DOUT)

- Power pins: 3.3V, 5V
- Ground pins
- Input/Output pins
- Communication pins
- PWM pins

Pins Rules

- DO NOT short connect pins.
- GPIO pins use 3.3V logic for input/output. Never input 5V signals to GPIO pins.
- Max current draw is 16mA. Don't try to drive your motor with GPIO pins directly.
- Physical numbers vs. BCM numbers

Solderless Breadboard

---------. . . . σ 0 0 Q 5 26 28 20 M 30 N 19 18 16 20 20 Th is These wires are in parallel

The pins are connected togehter in groups.

GPIO Python Libraries

- gpiozero
- RPi.GPIO
- pigpio
- WiringPi

gpiozero Examples: Blink LED

```
from gpiozero import LED
from time import sleep
```

```
red = LED(17)
```

while True: red.on() sleep(1) red.off() sleep(1)

gpiozero Examples: LED w/ Varied Brightness

from gpiozero import PWMLED
from time import sleep

led = PWMLED(17)

```
while True:
    led.value = 0 # off
    sleep(1)
    led.value = 0.5 # half brightness
    sleep(1)
    led.value = 1 # full brightness
    sleep(1)
```


gpiozero Examples: Pressed Button

from gpiozero import Button

button = Button(2)

```
while True:
    if button.is_pressed:
        print("Button is pressed")
    else:
        print("Button is not pressed")
```


gpiozero Examples: Button Controlled LED

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

pause()

