ENGR 3421:Robotics I

Encoder

Outline

- Types of Encoders
- Quadrature Encoder
- Computations

A Robot Needs to Feel

What is A (Rotary) Encoder

- (Rotary) Encoder measures angular movement.
- a common sensor for motors and other rotational devices.
- Provides closed-loop/feedback controls

Types of Encoders

Hall Effect

Incremental vs. Absolute

Incremental	Absolute
Simple	Complicated
Cheap	Expensive
Measures angular displacement	Measures absolute position
Floating origin	Fixed origin

Quadrature Encoder

Pololu 4805 Motor

PPR & CPR

Pulses Per Revolution:

describes the number of high pulses an encoder will have on either of its square wave outputs A or B over a single revolution.

Counts Per Revolution:

refers to the number of quadrature decoded states that exist between the two outputs A and B

Wheel Speed Computation

- 1. Time "Counts Per Second"
- 2. Revolutions Per Second = Counts Per Second / Counts Per Revolution
- 3. Shaft Speed = Revolutions Per Second / Gear Ratio = Wheel Angular Speed
- 4. Wheel Linear Speed = Wheel Angular Speed * Wheel Radius

Example: Measure Wheel Linear Speed

from machine import Pin, PWM
from time import sleep
from motor_driver import MotorDriver # self developed

SETUP

```
motor = MotorDriver(DIR_pin=4, PWM_pin=2)
enc_a = Pin(10, Pin.IN, Pin.PULL_UP)
enc_b = Pin(11, Pin.IN, Pin.PULL_UP)
counter = 0 # counts hall sensor trigger
def trig_handle_fn(pin): # enc_a and enc_b share this function
    global counter
    counter += 1
enc_a.irq(
    trigger=Pin.IRQ_RISING | Pin.IRQ_FALLING,
    handler=trig_handle_fn
enc_b.irg(
    trigger=Pin.IRQ_RISING | Pin.IRQ_FALLING,
    handler=trig_handle_fn
```

Example: Measure Wheel Linear Speed

```
# L00P
from math import pi
prev counter = 0
time step = 0.1
CPR = 48 # counts per revolution, on original motor shaft
GEAR RATIO = 46.85
WHEEL_RADIUS = 0.0325
motor.forward(speed=0.5)
for _ in range(50): # let motor spin 50 * 0.1 = 5 seconds
    n_trigs = (counter - prev_counter) # how many triggers happened after previous
loop
    rps_m = n_trigs / CPR / time_step # motor revs per second
    rps_w = rps_m / GEAR_RATIO # wheel revs per second
    ang_spd = rps_w * 2 * pi # revs/s --> rad/s
    lin spd = ang spd * WHEEL RADIUS
    prev_counter = counter # IMPORTANT! get ready for next iteration
    print(f"wheel linear speed: {lin_spd} m/s")
    sleep(time_step)
```

motor.stop()