ENGR 3421: Robotics I Kinematics of Differential Drive

Outline

- Motion: From Motor to Robot
- Forward Kinematics (w.r.t. different frames)

Motion: From Motor to Robot

ICC: Instantaneous Center of Curvature *R*: radius of curvature L: wheel separation distance V: robot linear velocity ω : robot angular velocity *r*: radius of wheel *i*: gear ratio $\dot{\varphi}_w$: angular velocity of wheel $\dot{\varphi}_m$: angular velocity of motor v_L : linear velocity of left wheel v_{p} : linear velocity of right wheel

Speed Computation: Motor to Wheel

- 1. Time "Counts Per Second"
- 2. Revolutions Per Second = Counts Per Second / Counts Per Revolution
- 3. Shaft Speed = Revolutions Per Second / Gear Ratio = Wheel Angular Speed
- 4. Wheel Linear Speed = Wheel Angular Speed * Wheel Radius

$$\dot{arphi}_w = rac{\dot{arphi}_m}{i}$$

Motor velocity to wheel velocity

 $v=\dot{arphi}_w r$ Wheel angular velocity to linear velocity

Motion: From Wheel to Robot

Rotation about ICC must be same for both wheels.

Linear velocity of left wheel

Linear velocity of right wheel

$$V=rac{v_L+v_R}{2}$$
 .

 $egin{aligned} &\omegaigg(R-rac{L}{2}igg)=v_L\ &\omegaigg(R+rac{L}{2}igg)=v_R \end{aligned}$

 $v_L = V - rac{\omega L}{2}$

 $v_R = V + rac{\omega L}{2}$

Linear velocity of robot

 $\omega = rac{v_R - v_L}{L}$

Angular velocity of robot

$$R = rac{L}{2} rac{v_L + v_R}{v_L - v_R}$$
 Rotation radius

Motion: Special Cases

- If $v_L = v_R$, then linear motion in a straight line. R becomes infinite, no rotation $\omega = 0$.
- If $v_L = -v_R$, then rotation about the midpoint of the wheel axis, R = 0.
- If $v_L = 0$, then rotation about the left wheel, R = L/2. Rotation about the right wheel if $v_R = 0$.

Forward Kinematics (Continuous)

$$egin{aligned} ec{p} &= \left[x, \, y
ight]^T \ ec{c} &= \left[x - R\sin\left(heta
ight), \, y + R\cos\left(heta
ight)
ight]^T \ ec{p} &- ec{c} &= \left[x - x_{ICC}, \, y - y_{ICC}
ight]^T \ ec{p} &- ec{c} &= \left[x - x_{ICC}, \, y - y_{ICC}
ight]^T \ ec{s} &= \left[egin{aligned} &\cos\left(\omega\delta t
ight) & -\sin\left(\omega\delta t
ight) & 0 \ \sin\left(\omega\delta t
ight) & \cos\left(\omega\delta t
ight) & 0 \ 0 & 1
ight] \left[egin{aligned} &x - x_{ICC} \ y - y_{ICC} \ \theta \end{array}
ight] + \left[egin{aligned} &x_{ICC} \ y_{ICC} \ \omega\delta t \end{array}
ight] \end{aligned}$$

$$egin{aligned} x(t) &= \int_0^t V(t) \cos{(heta(t))} dt \ y(t) &= \int_0^t V(t) sin(heta(t)) dt \ heta(t) &= \int_0^t \omega(t) dt \end{aligned}$$

Forward Kinematics (Discrete)

$$egin{aligned} x_{t+1} &= x_t + \Delta x \ &= x_t + V_t \cos heta_t \cdot \Delta t \ y_{t+1} &= y_t + \Delta y \ &= y_t + V_t sin heta_t \cdot \Delta t \ heta_{t+1} &= heta_t + \Delta heta \ &= heta_t + \omega_t \cdot \Delta t \end{aligned}$$

Inverse Kinematics

- Given a target $(\hat{x}, \hat{y}, \hat{ heta})$, What is V(t) and $\omega(t)$?
- Two-wheeled differential drive vehicle imposes **non-holonomic** constraints on establishing its pose (think about lateral translation).
- Can achieve the goal by moving in straight line and spinning in place.
- Path planning algorithms may find smoother trajectories.